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Abstract

Delivering congestion signals is essential to the performance of networks. Current TCP/IP networks use packet
losses to signal congestion. Packet losses not only reduces TCP performance, but also adds large delay. Explicit
Congestion Notification (ECN) delivers a faster indication of congestion and has better performance. However,
current ECN implementations mark the packet from the tail of the queue. In this paper, we propose the mark-front
strategy to send an even faster congestion signal. We show that mark-front strategy reduces buffer size requirement,
improves link efficiency and provides better fairness among users. Simulation results that verify our analysis are also
presented.
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1 Introduction

Delivering congestion signals is essential to the performance of computer networks. In TCP/IP, congestion signals
from the network are used by the source to determine the load. When a packet is acknowledged, the source increases
its window size. When a congestion signal is received, its window size is reduced [1, 2].

TCP/IP uses two methods to deliver congestion signals. The first method is timeout. When the source sends a packet,
it starts a retransmission timer. If it does not receive an acknowledgment within a certain time, it assumes congestion
has happened in the network and the packet has been lost. Timeout is the slowest congestion signal because of the
source has to wait a long time for the retransmission timer to expire.

The second method is loss detection. In this method, the receiver sends a duplicate ACK immediately on reception of
each out-of-sequence packet. The source interprets the reception of three duplicate acknowledgments as a congestion
packet loss. Loss detection can avoid the long wait of timeout.

Both timeout and loss detection use packet losses as congestion signals. Packet losses not only increase the traffic
in the network, but also add large transfer delay. The Explicit Congestion Notification (ECN) proposed in [3, 4]
provides a light-weight mechanism for routers to send a direct indication of congestion to the source. It makes use of
two experimental bits in the IP header and two experimental bits in the TCP header. When the average queue length
exceeds a threshold, the incoming packet is marked ascongestion experiencedwith a probability calculated from the
average queue length. When the marked packet is received, the receiver marks the acknowledgment using anECN-
Echobit in the TCP header to send congestion notification back to the source. Upon receiving the ECN-Echo, the
source halves its congestion window to help alleviate the congestion.

Many authors have pointed out that marking provides more information about the congestion state than packet drop-
ping [5, 6], and ECN has been proven to be a better way to deliver congestion signal and exhibits a better performance
[4, 5, 7].�
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In most ECN implementations, when congestion happens, the congested router marks the incoming packet that just
entered the queue. When the buffer is full or when a packet needs to be dropped as in Random Early Detection (RED),
some implementations, such as thenssimulator [8], have the “drop from front” option as suggested by Yin [9] and
Lakshman [10]. A brief discussion of drop from front in RED can be found in [11]. However, for packet marking,
these implementations still pick the incoming packet and not the front packet. We call this policy “mark-tail”.

In this paper, we propose a simple marking mechanism — the “mark-front” strategy. This strategy marks a packet
when the packet is going to leave the queue and the queue length is greater than the pre-determined threshold. The
mark-front strategy is different from the current mark-tail policy in two ways. First, since the router marks the packet
at the time when it is sent, and not at the time when the packet is received, a more up-to-date congestion signal is
carried by the marked packet. Second, since the router marks the packet in the front of the queue and not the incoming
packet, congestion signals do not undergo the queueing delay as the data packets. In this way, a faster congestion
feedback is delivered to the source.

The implementation of this strategy is extremely simple. One only needs to move the marking action from the enqueue
procedure to the dequeue procedure and choose the packet leaving the queue in stead of the packet entering the queue.

We justify the mark-front strategy by studying its benefits. We find that, by providing faster congestion signals, mark-
front strategy reduces the buffer size requirement at the routers; it avoids packet losses and thus improves the link
efficiency when the buffer size in routers is limited. Our simulations also show that mark-front strategy improves the
fairness among old and new users, and alleviates TCP’s discrimination against connections with large round trip time.

The mark-front strategy differs from the “drop from front” option in that when packets are dropped, only implicit
congestion feedback can be inferred from timeout or duplicate ACKs; when packets are marked, explicit and faster
congestion feedback is delivered to the source.

Gibbons and Kelly [6] suggested a number of mechanisms for packet marking, such as “marking all the packets in
the queue at the time of a packet loss”, “marking every packet leaving the queue from the time of a packet loss until
the queue becomes empty”, and “marking packets randomly as they leave the queue with a probability so that later
packets will not be lost.” Our mark-front strategy differs from these marking mechanisms in that it is a simple marking
rule that faithfully reflects the up-to-date congestion status, while the mechanisms suggested by Gibbons and Kelly
either do not reflect the correct congestion status, or need sophisticated probability calculation about which no sound
algorithm is known.

It is worth mentioning that mark-front strategy is as effective in high speed networks as in low speed networks.
Lakshman and Madhow [12] showed that the amount of drop-tail switches should be at least two to three times the
bandwidth-delay product of the network in order for TCP to achieve decent performance and to avoid losses in the
slow start phase. Our analysis in section 4.3 reveals that in the steady-state congestion avoidance phase, the queue
size fluctuates from empty to one bandwidth-delay product. So the queueing delay experienced by packets when
congestion happens is comparable to the fixed round-trip time.1 Therefore, the mark-front strategy can save as much
as a fixed round-trip time in congestion signal delay, independent of the link speed.

We should also mention that the mark-front strategy applies to both wired and wireless networks. When the router
threshold is properly set, the coherence between consecutive packets can be used to distinguish packet losses due to
wireless transmission error from packet losses due to congestion. This result will be reported elsewhere.

This paper is organized as follows. In section 2 we describe the assumptions for our analysis. Dynamics of queue
growth with TCP window control is studied in section 3. In section 4, we compare the buffer size requirements of
mark-front and mark-tail strategies. In section 5, we explain why mark-front is fairer than mark-tail. The simulation
results that verify our conclusions are presented in section 6. In section 7, we remove the assumptions made to facilitate
the analysis, and apply the mark-front strategy to the RED algorithm. Simulation results show that mark-front has the
advantages over mark-tail as revealed by the analysis.

1The fixed round-trip time is the round-trip time under light load, i.e., without queueing delay.

76NASA/TM—2001-210904



2 Assumptions

ECN is used together with TCP congestion control mechanisms like slow start and congestion avoidance [2]. When the
acknowledgment is not marked, the source follows existing TCP algorithms to send data and increase the congestion
window. Upon the receipt of an ECN-Echo, the source halves its congestion window and reduces the slow start
threshold. In the case of a packet loss, the source follows the TCP algorithm to reduce the window and retransmit the
lost packet.

ECN delivers congestion signals by setting thecongestion experiencedbit, but determining when to set the bit depends
on the congestion detection policy. In [3], ECN is proposed to be used with average queue length and RED. Their goal
is to avoid sending congestion signals caused by transient traffic and to desynchronize sender windows [13, 14]. In
this paper, to allow analytical modeling, we assume a simplified congestion detection criterion: when theactual queue
lengthis smaller than the threshold, the incoming packet will not be marked; when theactual queue lengthexceeds
the threshold, the incoming packet will be marked.

We also make the following assumptions. (1) Receiver windows are large enough so the bottleneck is in the network.
(2) Senders always have data to send and will send as many packets as their windows allow. (3) There is only one
bottleneck link that causes queue buildup. (4) Receivers acknowledge every packet received and there are no delayed
acknowledgments. (5) There is no ACK compression [15]. (6) The queue length is measured in packets and all packets
have the same size.

3 Queue Dynamics with TCP Window Control

In this section, we study the relationship between the window size at the source and the queue size at the congested
router. The purpose is to show the difference between mark-tail and mark-front strategies. Our analysis is made on one
connection, but with small modifications, it can also apply to multiple connection case. Simulation results of multiple
connections and connections with different round trip time will be presented in section 6.

In a path with one connection, the only bottleneck is the first link with the lowest rate in the entire route. In case of
congestion, queue builds up only at the router before the bottleneck link. The following lemma is obvious.

Lemma 1 If the data rate of the bottleneck link is
�

packets per second, then the downstream packet inter-arrival
time and the ack inter-arrival time on the reverse link can not be shorter than��� � seconds. If the bottleneck link
is fully-loaded (i.e., no idling), then the downstream packet inter-arrival time and the ack inter-arrival time on the
reverse link are��� � seconds.

Denote the source window size at time� as �	�
��� , then we have

Theorem 1 Consider a path with only one connection and only one bottleneck link. Let the fixed round trip time be seconds, the bottleneck link rate be
�

packets per second, and the propagation and transmission time between the
source and bottleneck router be��� . If the bottleneck link has been busy for at least seconds, and a packet just arrived
at the congested router at time� , then the queue length at the congested router is

� ���������	������� � ���  ��� (1)

Proof Consider the packet that just arrived at the congested router at time� . It was sent by the source at time������� .
At that time, the number of packets on the path and outstanding acks on the reverse link was������������� . By time � , ��� �
acks are received by the source. All packets between the source and the router have entered the congested router or
have been sent downstream. As shown in Figure 1, the pipe length from the congested router to the receiver, and then
back to the source is ����� . The number of downstream packets and outstanding acks are�  � ���!� � . The rest of the
�	�
�"��� � � unacknowledged packets are still in the congested router. So the queue length is

� �����#�$�	������� � ���%� � � �&�  ��� � � � ���	������� � �"�  �'� (2)
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Figure 1: Calculation of the queue length

This finishes the proof.

Notice that in this theorem, we did not use the number of packets between the source and the congested router to
estimate the queue length, because the packets downstream from the congested router and the acks on the reverse link
are equally spaced, but the packets between the source and the congested router may not be.

The analysis in this theorem is based on the assumptions in section 2. The conclusion applies to both slow start and
congestion avoidance phases. In order for equation (1) to hold, the router must have been congested for at least
seconds.

4 Buffer Size Requirement and Threshold Setting

When ECN signals are used for congestion control, the network can achieve zero packet loss. When acknowledgments
are not marked, the source gradually increase the window size. Upon the receipt of an ECN-Echo, the source halves
its congestion window to reduce the congestion.

In this section, we analyze the buffer size requirement for both mark-tail and mark-front strategies. The result also
includes an analysis on how to set the threshold.

4.1 Mark-Tail Strategy

Suppose( was the packet that increased the queue length over the threshold) , and it was sent from the source at time*,+ and arrived at the congested router at time� + . Its acknowledgment, which was an ECN-echo, arrived at the source
at time *.- and the window was reduced at the same time. We also assume that the last packet before the window
reduction was sent at time*!/- and arrived at the congested router at time� /- .

In order to use Theorem 1, we need to consider two cases separately: when) is large and when) is small, compared
to  � .

Case 1 If ) is reasonably large (about � ) such that the buildup of a queue of size) needs time, the assumption in
Theorem 1 is satisfied, we have

)0� � ��� + �1�&�	�
� + �����2���  � ���	� *,+ ���  ��3 (3)

so
�	� *4+ ����) 5  �'� (4)

Since the time elapse between* + and * - is one RTT, if packet( were not marked, the congestion window would
increase to6.�	� * + � . Since( was marked, the congestion window before receiving the ECN-Echo was

��� *!/- ���76.�	� * + ���8�9��6'��):5  � ���8� � (5)
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When the last packet sent under this window reached the router at time� /- , the queue length was

� �
� /- �#�$�	� * /- ���  � �76.��� *,+ ���8�;�  � �062) 5  � �8� � (6)

Upon the receipt of ECN-Echo, the congestion window was halved. The source can not send any more packets before
half of the packets are acknowledged. So6.)<5  � �8� is the maximum queue length.

Case 2 If ) is small,  � is an overestimate of the number of downstream packets and acks on the reverse link.

��� *,+ �1�&):5 number of downstream packets and acks=8):5  ��� (7)

Therefore, � �
� /- ���$��� *!/- �"�  � �>�?6.��� * + ���@���"�  � =$6A�
) 5  � ���@�;�  � �06.)<5  � �@� � (8)

So, in both cases,6.)<5  � �@� is an upper bound of queue length that can be reached in slow start phase.

Theorem 2 In a TCP connection with ECN congestion control, if the fixed round trip time is seconds, the bottleneck
link rate is

�
packets per second, and the bottleneck router uses threshold) for congestion detection, then the maximum

queue length can be reached in slow start phase is less than or equal to62) 5  � �8� .
As shown by equation (6), when) is large, the bound6.)@5  � �$� can be reached with equality. When) is small,
6.)&5  � �0� is just an upper bound. Since the queue length in congestion avoidance phase is smaller, this bound is
actually the buffer size requirement.

4.2 Mark-Front Strategy

Suppose( was the packet that increased the queue length over the threshold) , and it was sent from the source at time* + and arrived at the congested router at time� + . The router marked the packet(CB that stood in the front of the queue.
The acknowledgment of(CB , which was an ECN-echo, arrived at the source at time* - and the window was reduced
at the same time. We also suppose the last packet before the window reduction was sent at time* /- and arrived at the
congested router at time� /- .

Consider two cases separately: when) is large and when) is small.

Case 1 If ) is reasonably large (about � ) such that the buildup of a queue of size) needs time, the assumption in
Theorem 1 is satisfied. We have

)0� � ��� + �1�&�	�
� + ��� � ���  � ���	� * + ���  ��3 (9)

so
�	� * + ����) 5  �'� (10)

In slow start phase, the source increases the congestion window by one for every acknowledgment it receives. If the
acknowledgment of( was received at the source without the congestion indication, the congestion window would be
doubled to

62�	� *,+ ����6A�
):5  � � �
However, when the acknowledgment of( B arrived,)���� acknowledgments corresponding to packets prior to( were
still on the way. So the window size at time*!/- was

�	� *!/- ���76.�	� *4+ �"�&��)&�@�����8�D��)<5:6  ��� (11)
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When the last packet sent under this window reached the router at time� /- , the queue length was

� ��� /- ���$�	� * /- ���  � �&):5@6  � �  � �$)<5  �'� (12)

Upon the receipt of ECN-Echo, congestion window is halved. The source can not send any more packets before half
of the packets are acknowledged. So)<5  � is the maximum queue length.

Case 2 If ) is small,  � is an overestimate of the number of downstream packets and acks on the reverse link.

��� * + �1�&):5 number of downstream packets and acks=8):5  ��� (13)

Therefore, � ��� /- �1�&�	� *2/- ���  � �E��6.�	� * + �"��)9�"�  � =&6'��)<5  � ����)@�  � ��):5  ��� (14)

So, in both cases,)<5  � is an upper bound of queue length that can be reached in the slow start phase.

Theorem 3 In a TCP connection with ECN congestion control, if the fixed round trip time is seconds, the bottleneck
link rate is

�
packets per second, and the bottleneck router uses threshold) for congestion detection, then the maximum

queue length that can be reached in slow start phase is less than or equal to)<5  � .
Again, when) is large, equation (12) shows the bound)F5  � is tight. Since the queue length in congestion avoidance
phase is smaller, this bound is actually the buffer size requirement.

Theorem 2 and 3 estimate the buffer size requirement for zero-loss ECN congestion control.

4.3 Threshold Setting

In the congestion avoidance phase, congestion window increases roughly by one in every RTT. Assuming mark-tail
strategy is used, using the same timing variables as in the previous subsections, we have

�	� * + ��� � �
� + �G5  � ��):5  ��� (15)

The congestion window increases roughly by one in an RTT,

�	� *!/- ���$)<5  � 5$� � (16)

When the last packet sent before the window reduction arrived at the router, it saw a queue length of):5�� :
� �
� /- �#�&��� *!/- ���  � ��) 5�� � (17)

Upon the receipt of the ECN-Echo, the window was halved:

�	� * - ���H�
):5  � 5$���I�26 � (18)

The source may not be able to send packets immediately after* - . After some packets were acknowledged, the halved
window allowed new packets to be sent. The first packet sent under the new window saw a queue length of

� ��� - ���$�	� * - ���  � �>��)<5  � 5$���I�!6J�  � �>��)&�  � 5$���I�!6 � (19)

The congestion window was fixed for an RTT and then began to increase. So
� �
� - � was the minimum queue length in

a cycle.

In summary, in the congestion avoidance phase, the maximum queue length is)@50� and the minimum queue length
is �
)8�  � 5��K�L�26 .
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In order to avoid link idling, we should have��)&�  � 50�K�L�26NM�O or equivalently,)HM  � �&� . On the other hand, ifPRQ�S � is always positive, the router keeps an unnecessarily large queue and all packets suffer a long queueing delay.
Therefore, the best choice of threshold should satisfy

��)&�  � 5��K�I�!6C��O 3 (20)

or
)��  � �@� � (21)

If mark-front strategy is used, the source’s congestion window increases roughly by one in every RTT, but congestion
feedback travels faster than the data packets. Hence� � *!/- ���$)<5  � 5:T 3 (22)

whereT is between 0 and 1, and depends on the location of the congested router. Therefore,� ��� /- �#�&�	� *!/- ���  � �&):5:T 3 (23)

�	� * - �#�H�
)<5  � 5:TU�I�!6 3 (24)� �
� - �����	� *.- ���  � �H�
)<5  � 5:TU�I�!6J�  � �>��)&�  � 5<TU�L�26 � (25)

For the reason stated above, the best choice of threshold is)V�  � �:T . Compared with � , the difference between � ��T and  � �8� can be ignored. So we have the following theorem:

Theorem 4 In a path with only one connection, the optimal threshold that achieves full link utilization while keeping
queueing delay minimal in congestion avoidance phase is � �$� . If the threshold is smaller than this value, the link
will be under-utilized. If the threshold is greater than this value, the link can be full utilized, but packets will suffer an
unnecessarily large queueing delay.

Combining the results in Theorem 2, 3 and 4, we can see that the mark-front strategy reduces the buffer size require-
ment from aboutW  � to 6  � . It also reduces the congestion feedback’s delay by one fixed round-trip time.

5 Lock-out Phenomenon and Fairness

One of the weaknesses of mark-tail policy is its discrimination against new flows. Consider the time when a new flow
joins the network, but the buffer of the congested router is occupied by packets of old flows. In the mark-tail strategy,
the packet that just arrived will be marked, but the packets already in the buffer will be sent without being marked.
The acknowledgments of the sent packets will increase the window size of the old flows. Therefore, the old flows
which already have large share of the resources will grow even larger. However, the new flow with small or no share
of the resources has to back off, since its window size will be reduced by the marked packets. This causes a “lock-out”
phenomenon in which a single connection or a few flows monopolize the buffer space and prevent other connections
from getting room in the queue [16]. Lock-out leads to gross unfairness among users and is clearly undesirable.

Contrary to the mark-tail policy, the mark-front strategy marks the packets in the buffer first. Connections with large
buffer occupancy will have more packets marked than connections with small buffer occupancy. Compared with the
mark-tail strategy that let the packets in the buffer escape the marking, mark-front strategy helps to prevent the lock-out
phenomenon. Therefore, we can expect that mark-front strategy to be fairer than mark-tail strategy.

TCP’s discrimination against connections with large RTT is also well known. The cause of this discrimination is
similar to the discrimination against new connections. If connections with small RTT and large RTT start at the same
time, the connections with small RTT will receive their acknowledgment faster and therefore grow faster. When
congestion happens, connections with small RTT will take more buffer room than connections with large RTT. With
mark-tail policy, packets already in the queue will not be marked but only newly arrived packets will be marked.
Therefore, connections with small RTT will grow even larger, but connections with large RTT have to back off. Mark-
front alleviates this discrimination by treating all packets in the buffer equally. Packets already in the buffer may also
be marked. Therefore, connections with large RTT can have larger bandwidth.
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Figure 2: Simulation model.

6 Simulation Results

In order to compare the mark-front and mark-tail strategies, we performed a set of simulations with theS�* simulator
[8]. We modified the RED algorithm inS�* simulator to deterministically mark the packets when the real queue
length exceeds the threshold. The basic simulation model is shown in Figure 2. A number of sources* - 3 *KX 34�,�4�Y3 *,Z
are connected to the router - by 10 Mbps links, router - is connected to,X by a 1.5 Mbps link, and destinations� - 3I� X 34�4�,�Y3I� Z are connected toKX by 10 Mbps links. The link speeds are chosen so that congestion will only happen
at the router - , where mark-tail and mark-front strategies are tested.

With the basic configuration shown in Figure 2, the fixed round trip time, including the propagation time and the
transmission time at the routers, is 59 ms. Changing the propagation delay between router - and ,X from 20 ms to 40
ms gives an RTT of 99 ms. Changing the propagation delays between the sources and router - gives us configurations
of different RTT. An FTP application runs on each source. Reno TCP and ECN are used for congestion control. The
data packet size, including all headers, is 1000 bytes and the acknowledgment packet size is 40 bytes.

With the basic configuration,

 � �$O � O�[!\^]%� � [^]��,O�_ bits �H���,O!`a6 � [ bytes bH��� packets

In our simulations, the routers perform mark-tail or mark-front. The results for both strategies are compared.

6.1 Simulation Scenarios

In order to show the difference between mark-front and mark-tail strategies, we designed the following simulation
scenarios based on the basic simulation model described in Figure 2. If not specified, all connections have an RTT of
59 ms, start at 0 second and stop at the 10th second.

1. One connection.

2. Two connections with the same RTT.

3. Two overlapping connections with the same RTT, but the first connection starts at 0 second and stops at the 9th
second, the second connection starts at the first second and stops at the 10th second.

4. Two connections with RTT equal to 59 and 157 ms respectively.

5. Two connections with same RTT, but the buffer size at the congested router is limited to 25 packets.

6. Five connections with the same RTT.

7. Five connections with RRT of 59, 67, 137, 157 and 257 ms respectively.

8. Five connections with the same RTT, but the buffer size at the congested router is limited to 25 packets.
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Scenarios 1, 4, 6 and 7 are mainly designed for testing the buffer size requirement. Scenarios 1, 3, 4, 6, 7, 8 are for
link efficiency, and scenarios 2, 3, 4, 5, 6, 7 are for fairness among users.

6.2 Metrics

We use three metrics to compare the two strategies. The first metric is thebuffer size requirementfor zero loss
congestion control. This is the maximum queue size that can be built up at the router in the slow start phase before the
congestion signal takes effect at the congested router. If the buffer size is greater or equal to this value, no packet loss
will happen. This metric is measured as the maximum queue length in the entire simulation.

The second metric,link efficiency, is calculated from the number of acknowledged packets (not counting the retrans-
missions) divided by the possible number of packets that can be transmitted during the simulated time. Because of the
slow start phase and possible link idling after the window reduction, the link efficiency is always smaller than 1. Link
efficiency should be measured with long simulation time to minimize the effect of the initial transient state. We tried
different simulation times from 5 seconds to 100 seconds. The results for 10 seconds show the essential features of the
strategy, without much difference from the results for 100 seconds. So the simulation results presented in this paper
are based on 10-second simulations.

The third metric,fairnessindex, is calculated according to the formula in [17]. IfP connections share the bandwidth,
and ced is the number of acknowledged packets of connectionQ , then thefairnessindex is calculated as:

fhg Qi�SGj�*�* � ��k
Z
dml - c�di� XP k Zdnl - c Xd (26)

fairness index is often close to 1, in our graphs, we draw theo S fhg Qi�SGj.*K* index:

o S fhg Qi�SGj.*�* �H�;� fhg Q��SGj.*�* � (27)

The performance of ECN depends on the selection of the threshold value. In our results, all three metrics are drawn
for different values of threshold.

6.3 Buffer Size Requirement

Figure 3 shows the buffer size requirement for mark-tail and mark-front. The measured maximum queue lengths are
shown with “p ” and “ q ”. The corresponding theoretical estimates from Theorem 2 and 3 are shown with dashed and
solid lines. In Figure 3(b) and 3(d), where the connections have different RTT, the theoretical estimate is calculated
from the smallest RTT.

From the simulation, we find that for connections with the same RTT, the theoretical estimate of buffer size requirement
is accurate. When threshold) is small, the buffer size requirement is an upper bound, when)rM  � , the upper bound
is tight. For connections with different RTT, the estimate given by the largest RTT is an upper bound, but is usually an
over estimate. The estimate given by the smallest RTT is a closer approximation.

6.4 Link Efficiency

Figure 4 shows the link efficiency for various scenarios. In all cases, the efficiency increases with the threshold, until
the threshold is about � , where the link reaches almost full utilization. Small threshold results in low link utilization
because it generates congestion signals even when the router is not really congested. Unnecessary window reduction
actions taken by the source lead to link idling. The link efficiency results in Figure 4 verify the choice of threshold
stated in Theorem 4.

In the unlimited buffer cases (a), (b), (d), (e), the difference between mark-tail and mark-front is small. However,
when the buffer size is limited as in cases (c) and (f), mark-front has much better link efficiency. This is because
when congestion happens, mark-front strategy provides a faster congestion feedback than mark-tail. Faster congestion
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(a) One single connection
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(b) Two connections with different RTT
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(c) Five connections with same RTT
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Figure 3: Buffer size requirement in various scenarios

feedback prevents the source from sending more packets that will be dropped at the congested router. Multiple drops
cause source timeout and idling at the bottleneck link, and thus the low utilization. This explains the drop of link
efficiency in Figure 4 (c) and (f) when the threshold exceeds about 10 packets for mark-tail and about 20 packets in
mark-front.

6.5 Fairness

Scenarios 2, 3, 4, 5, 6, 7 are designed to test the scenario of the two marking strategies. Figure 5 shows lock-out
phenomenon and alleviation by mark-front strategy. With the mark-tail strategy, old connections occupy the buffer
and lock-out new connections. Although the two connections in scenario 3 have the same time span, the number of the
acknowledged packets in the first connection is much larger than that of the second connection, Figure 5(a). In scenario
4, the connection with large RTT (157 ms) starts at the same time as the connection with small RTT (59 ms), but the
connection with small RTT grows faster, takes over a large portion of the buffer room and locks out the connection
with large RTT. Of all of the bandwidth, only 6.49% is allocated to the connection with large RTT. Mark-front strategy
alleviates the discrimination against large RTT by marking packets already in the buffer. Simulation results show that
mark-front strategy improves the portion of bandwidth allocated to connection with large RTT from 6.49% to 21.35%.

Figure 6 shows the unfairness index for the mark-tail and the mark-front strategies. In Figure 6(a), the two connections
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Figure 4: Link efficiency in various scenarios
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Figure 5: Lock-out phenomenon and alleviation by mark-front strategy

have the same configuration. Which connection receives more packets than the other is not deterministic, so the
unfairness index seems random. But in general, mark-front has smaller unfairness index than mark-tail.

In Figure 6(b), the two connections are different: the first connection starts first and takes the buffer room. Although
the two connections have the same time span, if mark-tail strategy is used, the second connection is locked out by
the first and therefore receives fewer packets. Mark-front avoids this lock-out phenomenon. The results show that
the unfairness index of mark-front is much smaller than that of mark-tail. In addition, as the threshold increases, the
unfairness index of mark-tail increases, but the mark-front remains roughly the same, regardless of the threshold.

Figure 6(c) shows the difference on connections with different RTT. With mark-tail strategy, the connections with
small RTT grow faster and therefore locked out the connections with large RTT. Since mark-front strategy does not
have the lock-out problem, the discrimination against connections with large RTT is alleviated. The difference of the
two strategies is obvious when the threshold is large.

Figure 6(e) shows the unfairness index when the router buffer size is limited. In this scenario, when the buffer is full,
the router drops the the packet in the front of the queue. Whenever a packet is sent, the router checks whether the
current queue size is larger than the threshold. If yes, the packet is marked. The figure shows that mark-front is fairer
than mark-tail.

Similar results for five connections are shown in Figure 6(d) and 6(f).

7 Apply to RED

The analytical and simulation results obtained in previous sections are based on the simplified congestion detection
model that a packet leaving a router is marked if the actual queue size of the router exceeds the threshold. However,
RED uses a different congestion detection criterion. First, RED uses average queue size instead of the actual queue
size. Second, a packet is not marked deterministically, but with a probability calculated from the average queue size.

In this section, we apply the mark-front strategy to the RED algorithm and compare the results with the mark-tail
strategy. Because of the difficulty in analyzing RED mathematically, the comparison is carried out by simulations
only.

RED algorithm needs four parameters: queue weight� , minimum threshold��v Z dnw , maximum threshold��v Z;xUy and
maximum marking probabilityz Z;xUy . Although determining the best RED parameters is out of the scope of this paper,
we have tested several hundred of combinations. In almost all these combinations, mark-front has better performance
than mark-tail in terms of buffer size requirement, link efficiency and fairness.
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Figure 6: Unfairness in various scenarios
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Figure 7: Buffer size requirement for different queue weight,z Z;xUy ��O � �

Instead of presenting individual parameter combinations for all scenarios, we focus on one scenario and present the
results for a range of parameter values. The simulation scenario is the scenario 3 of two overlapping connections
described in section 6.1. Based on the recommendations in [13], we vary the queue weight� for four values: 0.002,
0.02, 0.2 and 1, vary��v Z dmw from 1 to 70, fix ��v Z{xYy as 6.��v Z dmw , and fix z Z;xUy as 0.1.

Figure 7 shows the buffer size requirement for both strategies with different queue weight. In all cases, mark-front
strategy requires smaller buffer size than the mark-tail. The results also show that queue weight� is a major factor
affecting the buffer size requirement. Smaller queue weight requires larger buffer. When the actual queue size is used
(corresponding to�0�H� ), RED requires the minimum buffer size.

Figure 8 shows the link efficiency. For almost all values of threshold, mark-front provides better link efficiency than
mark-tail. Contrary to the common belief, the actual queue size (Figure 8(d)) is no worse than the average queue size
(Figure 8(a)) in achieving higher link efficiency.

The queue size trace at the congested router shown in Figure 9 provides some explanation for the smaller buffer
size requirement and higher efficiency of mark-front strategy. When congestion happens, mark-front delivers faster
congestion feedback than mark-tail so that the sources can stop sending packets earlier. In Figure 9(a), with mark-tail
signal, the queue size stops increasing at 1.98 second. With mark-front signal, the queue size stops increasing at 1.64
second. Therefore mark-front strategy needs smaller buffer.
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Figure 8: Link efficiency for different queue weight,z Z;xUy ��O � �

On the other hand, when congestion is gone, mark-tail is slow in reporting the change of congestion status. Packets
leaving the router still carry the congestion information set at the time when they entered the queue. Even if the queue
is empty, these packets still tell the sources that the router is congested. This out-dated congestion information is
responsible for the link idling around 6th second and 12th second in Figure 9(a). As a comparison, in Figure 9(b), the
same packets carry more up-to-date congestion information to tell the sources that the router is no longer congested,
so the sources send more packets in time. Thus mark-front signal helps to avoid link idling and improve the efficiency.

Figure 10 shows the unfairness index. Both mark-front and mark-tail have big oscillations in the unfairness index when
the threshold changes. These oscillations are caused by the randomness of how many packets of each connection get
marked in the bursty TCP slow start phase. Changing the threshold value can significantly change the number of
marked packets of each connection. In spite of the randomness, in most cases mark-front is fairer than mark-tail.

8 Conclusion

In this paper we analyze the mark-front strategy used in Explicit Congestion Notification (ECN). Instead of marking
the packet from the tail of the queue, this strategy marks the packet in the front of the queue and thus delivers faster
congestion signals to the source. Compared with the mark-tail policy, mark-front strategy has three advantages. First,
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Figure 10: Unfairness for different queue weight,z Z{xYy �$O � �
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it reduces the buffer size requirement at the routers. Second, it provides more up-to-date congestion information to help
the source adjust its window in time to avoid packet losses and link idling, and thus improves the link efficiency. Third,
it improves the fairness among old and new users, and helps to alleviate TCP’s discrimination against connections with
large round trip time.

With a simplified model, we analyze the buffer size requirement for both mark-front and mark-tail strategies. Link
efficiency, fairness and more complicated scenarios are tested with simulations. The results show that mark-front
strategy achieves better performance than the current mark-tail policy. We also apply the mark-front strategy to the
RED algorithm. Simulations show that mark-front strategy used with RED has similar advantages over mark-tail.

Based on the analysis and the simulations, we conclude that mark-front is an easy-to-implement improvement that
provides a better congestion control that helps TCP to achieve smaller buffer size requirement, higher link efficiency
and better fairness among users.
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